company logo
advertisement for deep fried Twinkies


限制性内切酶


DNA限制性内切酶
 

 

 

  在生物体内有一类酶,它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶(简称限制酶)。限制酶是基因工程中所用的重要切割工具。科学家已从原核生物中分离出了许多种限制酶,并且已经商品化,在基因工程中广泛使用。根据限制酶切割的特点,可将它们分为两大类:一类是切割部位无特异性的;另一类是可特异性地识别核苷酸序列,即只能在一定的DNA序列上进行切割。这种能被特异性识别的切割部位都具有回文序列,也就是在切割部位,一条链正向读的碱基顺序与另一条链反向读的顺序完全一致。在基因工程中使用的多数是后一类酶。限制酶在特定切割部位进行切割时,按照切割的方式,又可以分为错位切和平切两种。错位切一般是在两条链的不同部位切割,中间相隔几个核苷酸,切下后的两端形成一种回文式的单链末端,这个末端能与具有互补碱基的目的基因的DNA片段连结,故称为黏性末端。这种酶在基因工程中应用最多。另一种是在两条链的特定序列的相同部位切割,形成一个无黏性末端的平口
  在基因操作过程中,除了限制酶以外,还要用一系列的酶类,才能完成全过程。例如,碱性磷酸酯酶、DNA多聚酶、末端转移酶、多核苷酸酶、逆转录酶等。这些酶都有各自特殊的催化功能,现在都有商品出售,可以根据不同的需要选用。
限制性内切酶发展历史:
  30多年前,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。细菌可以抵御新病毒的入侵,而这种"限制"病毒生存的办法则可归功于细胞内部可摧毁外源DNA的限制性内切酶。首批被发现的限制性内切酶包括来源于大肠杆菌的EcoR I和EcoR II,以及来源于Haemophilus influenzae的Hind II和Hind III。这些酶可在特定位点切开DNA,产生可体外连接的基因片段。研究者很快发现内切酶是研究基因组成、功能及表达非常有用的工具。
 

 

  当限制性内切酶的应用在上世纪七十年代流传开来的时候,以NEB为代表的许多公司开始寻找更多的限制性内切酶。除了某些病毒以外,限制性内切酶只在原核生物中被发现。人们正在从数以千计的细菌及古细菌中寻找新的限制性内切酶。而对已测序的原核基因组数据分析表明,限制性内切酶在原核生物中普遍存在--所有自由生存的细菌和古细菌似乎都能编码限制性内切酶。
 

 

  限制性内切酶的形式多样,从大小上来说,它们可以小到如Pvu II(157个氨基酸),也可以比1250个氨基酸的Cje I更大。在已纯化分类的3000种限制性内切酶中,已发现了超过250种的特异识别序列。其中有30%是在NEB发现的。对具有未知特异识别序列的限制性内切酶的研究发现工作仍在继续。人们从分析细胞提取物的生化角度研究的同时,也采用计算机分析已知的基因组数据,以期有更多的发现。尽管很多新发现的酶的识别序列与已有的重复--即同裂酶,仍然有识别新位点的酶不断被发现。
 

 

  上世纪80年代,NEB开始克隆并表达限制性内切酶。克隆技术由于将限制性内切酶的表达与原有细胞环境分离开来,避免了原细胞中其它内切酶的污染,从而提高了酶的纯度。此外,克隆技术提高了限制性内切酶的产量,简化了纯化过程,使得生产成本显著降低;克隆的基因很容易进行测序分析,表达出的蛋白也能进行X射线结晶分析,这使得我们对于克隆产物更加确定。